257

Bitcoin Price Forecasting

Gupta, A., & Nain, H. (2021). Bitcoin price prediction using time series analysis and machine

learning techniques. In Machine Learning for Predictive Analysis (pp. 551–560).

Singapore: Springer.

Ho, W. T., & Yu, F. W. (2021). Predicting chiller system performance using ARIMA-

regression models. Journal of Building Engineering, 33, 101871.

Ibikunle, G., McGroarty, F., & Rzayev, K. (2020). More heat than light: Investor attention and

bitcoin price discovery. International Review of Financial Analysis, 69, 101459.

Ismail, M. T., Shah, N. Z. A., & Karim, S. A. A. (2021). Modeling solar radiation in pen­

insular Malaysia using ARIMA model. In Clean Energy Opportunities in Tropical

Countries (pp. 53–71). Singapore: Springer.

Jalali, M. F. M., & Heidari, H. (2020). Predicting changes in Bitcoin price using grey system

theory. Financial Innovation, 6(1), 1–12.

Ji, S., Kim, J., & Im, H. (2019). A comparative study of bitcoin price prediction using deep

learning. Mathematics, 7(10), 898.

Kaggle. (2021, May 01). Bitcoin data at 1-min intervals from select exchanges, Jan 2012 to

March 2021. retrieved on 5, May’ 2021 https://www​.kaggle​.com​/mczielinski​/bitcoin​-

historical​-data​/data

Kavasseri, R. G., & Seetharaman, K. (2009). Day-ahead wind speed forecasting using

f-ARIMA models. Renewable Energy, 34(5), 1388–1393.

Khedr, A., Arif, I., Pavijaraj, P. V., El-Bannany, M., Alhashmi, S. S. M. (2021). Cryptocurrency

price prediction using traditional statistical and machine learning techniques: A survey.

Intelligent Systems in Accounting, Finance and Management, 28. 3–34. https://doi​.org​/

10​.1002​/isaf​.1488

Kinasz, W. (2021). Use of artificial neural networks and the ARIMA model for short-term

stock indices forecasts (Doctoral dissertation, Instytut Elektroenergetyki).

Liu, M. D., Ding, L., & Bai, Y. L. (2021). Application of hybrid model based on empirical

mode decomposition, novel recurrent neural networks and the ARIMA to wind speed

prediction. Energy Conversion and Management, 233, 113917.

Livieris, I. E., Kiriakidou, N., Stavroyiannis, S., & Pintelas, P. (2021). An advanced CNN-

LSTM model for cryptocurrency forecasting. Electronics, 10(3), 287.

Lv, T., Wu, Y., & Zhang, L. (2021, April). A traffic interval prediction method based on

ARIMA. Journal of Physics: Conference Series, 1880(1), 012031). IOP Publishing.

Patel, M. M., Tanwar, S., Gupta, R., & Kumar, N. (2020). A deep learning-based crypto­

currency price prediction scheme for financial institutions. Journal of Information

Security and Applications, 55, 102583, ISSN 2214-2126, https://doi​.org​/10​.1016​/j​.jisa​.

2020​.102583.

Pintelas E., Livieris I.E., Stavroyiannis S., Kotsilieris T., Pintelas P. (2020) Investigating the

problem of cryptocurrency price prediction: A deep learning approach. In Maglogiannis

I., Iliadis L., Pimenidis E. (eds.), Artificial Intelligence Applications and Innovations.

AIAI 2020. IFIP Advances in Information and Communication Technology (vol. 584).

Cham: Springer. https://doi​.org​/10​.1007​/978​-3​-030​-49186​-4_9

Poongodi, M., Vijayakumar, V., & Chilamkurti, N. (2020). Bitcoin price prediction

using ARIMA model. International Journal of Internet Technology and Secured

Transactions, 10(4), 396–406.

Rathan, K., Sai, S. V., & Manikanta, T. S. (2019, April). Crypto-currency price prediction

using decision tree and regression techniques. In 2019 3rd International Conference on

Trends in Electronics and Informatics (ICOEI) (pp. 190–194). IEEE.

Shankhdhar, A., Singh, A. K., Naugraiya, S., & Saini, P. K. (2021, April). Bitcoin price alert

and prediction system using various models. IOP Conference Series: Materials Science

and Engineering, 1131(1), 012009. IOP Publishing.